Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

GENERAL CONSIDERATIONS REGARDING THE DEVELOPMENT OF
GAMES USING UNITY TECHNOLOGY

Alexandru TABUSCA'?
Cristina COCULESCU??
Mironela PIRNAU??

Abstract:

Video game development platforms represent a specialized work environment that contains
a multitude of properties and tools that help game creators in designing and making
applications in this field. The market for game development platforms is currently booming,
offering a diverse range of options. Anyone with motivation and ideas can start creating and
developing a game using popular platforms such as Unreal Engine, Unity, Game Maker or
RPG Maker VX Ace. Today, every platform for game development is supported by a vast
basic documentation but also by a huge public community that provides game creators with
all the tools they need to create high-performance games. If an experienced or even less
experienced developer finds himself in a situation where he cannot solve a problem on his
own, he has the opportunity to find the answer to the problem encountered, on the
community forums corresponding to the technology used in creating the game, or he will
find someone who has faced a similar situation and can give him answers/advice for the
specific situation. Depending on the purpose of the final product, the game creator has the
opportunity to choose the platform he will use in creating it. Unity is the most popular video
game development platform due to its cross-platform capability. Unity can be used both in
making 2D or 3D games, but also in the film, automotive, architecture, engineering, and
construction industries.

Keywords: game development, cross-platform, Unity

1. Introduction

Unity is a cross-platform game engine developed by Unity Technologies, launched first in
June 2005, exclusively for MacOS X. It can be used to create games in bidimensional, tri-
dimensional, virtual, and augmented reality environments — including simulations [1]. The
latest stable version, 2019.2.17, has been launched in December 2019. Even since 2018,
Unity has been utilized to develop approximately half of the new mobile games brought to
the market and around 60% of the content developed for augmented reality and virtual
reality. The programming languages employed in conjunction with Unity are C# and
JavaScript. For these two programming languages an integrated development environment
is available within Visual Studio of MonoDevelop, as code editors [2].

121 PhD Associate Professor, Romanian-American University, School of Computer Science for
Business Management, tabusca.alexandru@profesor.rau.ro

122 PhD Associate Professor, Romanian-American University, School of Computer Science for
Business Management, coculescu.cristina@profesor.rau.ro

123 phD Associate Professor, Titu Maiorescu University, Faculty of Informatics,
mironela.pirnau@prof.utm.ro

Pag. 267 / 309

mailto:tabusca.alexandru@profesor.rau.ro
mailto:coculescu.cristina@profesor.rau.ro
mailto:mironela.pirnau@prof.utm.ro

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Unity Technologies, as well as the community members, actively create assets. Unity Asset
Store is a growing library of such assets, hosting thousands of free and low-price elements
that can help save both time and effort for Unity developers. Inside the store there are many
types of different assets, including textures, animations, fully-fledged models, complete
projects, tutorials and editor extensions. This blend of both free and easily accessible assets
(low-cost ones) represents a hugely important feature for Unity, because the developers can
download them and insert directly into their project [2]. Today, in pandemic conditions
worldwide, for the development of any game the sound component is very important and
helps produce a captivating and emotional game experience. Finding the perfect soundtrack
that best matches a game application is a very important element to attract and retain players
(customers). To this end, Unity offers an extensive library of both free and low-cost audio
elements, music and sound effects, so that the game developer should only identify exactly
what matches as best as possible to his game. [2][3].

Unity offers a very intuitive user interface that invites developers to experiment with the
multitude of options and features offered for content creators. There are three different
version of this interface: Personal, Plus and Pro. There also exists an Enterprise version,
similar to the Pro one but bundled with an Enterprise environment package.

2. New updates and features in Unity

Unity has brought updates, new features, and tools for the 2D game developers. It added
support for maneuvering of animations directly from the “timeline”, for animation preview
and modification [2][4]. The application interface is very well organized and very easy to
understand and use (see Figure. 1).

lone - Unity 2020.3.21f1 Personal <DX11>

Add Component

Figure 1. Main Unity user interface

The interface comprises many different options, among which we notice the following main
ones: Project (which shows the assets), Hierarchy (through which developers see all
elements inside the game environment), Console (shows errors, warning messages or help

Pag. 268 / 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

error-tracking through the debugger), Asset Store (used for adding diverse objects/assets
for the game), Prefab (for different effects for the camera/view, field etc.), the Scene
window (where developers can edit all aspects of the current project), and the Play, Pause,
Forward buttons. Unity also makes available to the game creators many different scripts
that can add functionalities, in the “Tilemap Editor” section, as well as new brushes and
tiles which can be accessed from the 2D Extras package [1][5]. The 2D editor for tile maps
is not available by default when first installing Unity, but it can be downloaded from the
Package Manager section. An important added feature was introduced in Unity as the 2D
Sprite Shape component, meant to help create curved fields. The facility goes together with
an editor that allows the definition of margins and fillings, as well as the automatic creation
of colliders [2]. 2D PSD Importer component permits the import of sprites directly into a
third-party application like Photoshop, keeping the image layering — fact that allows layer-
by-layer animation design without the need to individually import each individual layer.

MonoBehaviour is the basic class of all scripts meant to be attached to a game object and it
is used for faster code creation, lighting manipulation, and development of Artificial
Intelligence (AI) modules without extensive previous Al knowledge [2][6].

The main widely used functions of the MonoBehaviour class are:

1. Start() —is represents a function called only once, inside the first frame after script

activation, before any Update type function

Update() — represents a function called at each individual frame

3. FixedUpdate() — represents a function called regularly for physics calculations (by
default every 0.02 seconds)

4. Awake() — a function called only once on all scene objects, before all Start
functions, when the script instance is loaded

N

Useful properties with wide usage can also be mentioned:

1. enabled — when a certain object is marked as active it can be refreshed through the

use of an Update function

gameObject — it refers to the object to which the component is attached to

3. tag— it refers to the tag associated to the object (it can be added to more objects at
the same time, as a category descriptor) and it can be used to compare objects

4. transform — offers access to the position, rotation, and scale of the object and to
their manipulation

5. name — it represents the name of a certain object, used for calling it in different
scenarios

no

Important methods also widely used are:

1. GetComponent(Type objectType)
2. SendMessage(string methodName, object value)
3. Destroy(Object object) — it destroys the object
Pag. 269 / 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

4. DontDestroyOnLoad(Object object) — the object will not be destroyed at the
loading of a new scene
5. Find(string name) — it will identify the respective object [2][8].

3. Unity Tools and Technologies

The C# programming language is a general-purpose language, in the category of “strong
typing” programing languages, component and object oriented. It was developed in 2000
by Microsoft as part of the .NET project and allows programmers to develop applications
that run on top of this system. With the help of C# used within Unity one can define new
component, can extend existing components, can define player interactions as well as
enemy behavior, can model moving objects or it can actually model the entire game

(2]6][7].

Main C# characteristics are:

e Garbage collection — a mechanism that automatically frees the memory occupied
by unused objects

e Exceptions management — offers an organized environment for detection of errors

e Focuses on versioning for ensuring computability of different programs during
development phases

e Through a Microsoft backed project, called Mono, C# became quite versatile from
the point of view of portability. Mono represents an open-source development
platform based on .NET, the ECMA standards for C# and the common
infrastructure language CLI (Command Line Interface). This fact makes possible
the porting of applications on different other platforms, such as Linux-based ones,
macOS, Sony PlayStation or Xbox consoles.

Encapsulation, known also as the concept of “data hiding”, is defined by the grouping of
the code together with the data it manipulates, thus restricting the access to these data from
outside the class. Among the advantaged of the encapsulation method, we mention hiding
the class implementation (code) from external users, flexibility and modularization
possibilities.

C# code is reusable and easily editable. The inheritance concept, within the object-oriented
paradigm, permits the defining of derivative classes from a master class or overloading of
its functions. Polymorphism represents the third basic concept of object-oriented
programming, and it is defined as the overloading of the master class methods in order to
purposely manipulate objects from the derivative class [2][8].

Scripting and its role

Scripts are a key ingredient in implementing any Unity application. A script is built from a
list of commands that are executed by a certain program. Those commands are used to
Pag. 270/ 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

automatize processes. In Unity, C# or JavaScript scripts are attached to scene objects in
order to determine their behavior. For adding a script to an object component, one has to
use the Add Component button from the inspector section. The Unity engine uses for any
implemented script a system of event methods which are predefined (they exist even if not
specifically declared inside the script class). Unity permits developers to create their own
components by using scripts to trigger game events but also to modify game components’
properties [6][8].

A unity script is created and implemented as shown within Figure 2.

Assets GameObject Component Window Folder

»
Create C# Script

Show in BExplorer -
Figure 2. Creation of C# script in Unity

The script is created inside the folder selected from the Project panel. By default, Unity will
use Visual Studio for script editing, but one can select any other editor from the Preferences
-> External Tools section (see Figure 3).

13 Preferences

External Tools

Open by file extension

~ Open by file extension
Visual Studic Community 2019 [16.8.0]
Visual Studio Code

Browse...

Timeline
Ul Scaling

stall one of the foll

Figure 3. Setting the editor for script creation/editing

The initial content of the script file looks like Figure 4. The script makes the link with the

internal Unity engine by implementing a class that derives from the encapsulated Unity

native class MonoBehaviour.

If one attaches a script component to a game object, this creates a new instance of the project

defined object. The name of the class is taken from the name given when creating the script
Pag. 271 /309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

file. The name of the class and the name of the file must be the same in order to allow the
attachment of the script component to the game object [2] — in our example the name used
is “Examplel1-URA”, as seen inside Figure 4.

The Update() function is the place that hosts the code which will take care of the frame
update for the game object. This process includes the movement, triggering of actions and
answers to user input. It is also very useful to be able to configure variables, read
preferences and create connections with other game objects before any action actually takes
place inside the game. The Start() function is used to cover all initializations and will be
call by Unity before the first call of the Update() function.

[Miscellaneous Files ~ | *z Examplel_URA ~ | 9, Update()
1 —using System.Collections;
2 using System.Collections.Generic;
3 using UnityEngine;
a4
5 —public class Examplel URA : MonoBehaviour
6 {
7 // Start 1is called before the first frame update
8 = void Start()
9 {
10
11 }
12
13 // Update is called once per frame
144" = void Update()|
15 {
16
17 }
18 1
19

Figure 4. Default content of a Unity script

Inside Unity, initializing of an object is not done by using a constructor function, because
the instantiation of the objects is managed by the editor and does not take place at the
beginning of the game only. One can attach a script by dragging the script inside a game
object, from the hierarchical panel or inside the selected game object inspector. The
predefined element acts as a template based on which we can create new instances of that
predefined element. A scene is an interactive “window” from Unity to the current game
being developed. This contains the hierarchy of the inserted objects, the camera, the lights,
the canvas, prefabs etc. Immediately after a scene is created it must be added to the scenes
array, accessible from the File -> Build Settings tabs (see Figure 5).

Pag. 272 /309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Build gs
Scenes In Build

mpleScene

Add Open Scenes

Platform

|;| PC, Mac & Linux Standalone

Compressicn Method Default

Figure 5. Build Settings tab

The order of the scenes is very important because the passing from one to another can be
done only from top to bottom. The prefab is a template type object which permits the storage
of an object with all its elements, to be later reused anytime one needs. The prefab can be
used as a game object inside scripts, is saved with all its settings, components and added
scripts. Saving a prefab requires overwriting as long as it is not directly accessed from the
prefab editor interface [10].

The Prefab system in Unity allows for creation, configuring, storing of a game object [2][4]
with all its components. If one intends to reuse a game object configured, for example, as a
character or a landscape — in different locations within the same scene or in several distinct
scenes of the project, it must be converted to a prefab. This is a recommended course of
action, and not just the copy/paste procedure for a game object, because the Prefab system
allow for automatic keeping of all copies synchronized. In order to create complex
hierarchies of objects it is useful to imbricate prefabs into other “container” prefabs,
because there is the possibility to overwrite the settings for individual prefab instances. The
use of Prefab system is also useful when one needs to instantiate game objects. In order to
instantiate a prefab during execution time, the code of the script must contain a reference
to that respective prefab. One can create this reference by creating a public variable inside
the code for storing the Prefab reference. The public variable from within the code is shown
as an attributed field inside the Inspector. Later, we can assign the real prefab that we want
to use, inside the Inspector.

Lights and lightning inside Unity game engine

Pag. 273 /309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

The Unity game developers can create a very realistic lightning that matches very well to a
vast array of art styles. In Unity lightning is implemented by approximating the way real
light behaves in the real world, because Unity uses very details models about lightning
processes for an as realistic result as possible, or simplified models for a more stylized
result. The lightning created inside Unity can be direct or indirect and for more realistic
lightning results, one must simulate both direct and indirect light sources. The direct light
is the light that is emitted, hits a surface and it then reflected directly into a sensor (e.g., a
camera). Indirect lightning represents the light that hits different surfaces more times or the
sky lightning [2]. Unity can calculate direct illumination, indirect illumination or both
direct/indirect illumination and the techniques used by Unity depend on the mode the game
creator configures the Unity project settings. Instruments for illuminating the scene use
quite easy to configure parameters, as observable from Figure 6.

® Lighting

Scene | Realtime Lightmaps Baked Lightmaps

Realtime Lighting

Realtime Global lllury

Mixed Lighting

Figure 6. Panel for setting lightning parameters

The main properties used for defining lightning in Unity are also shown in Figure 7.

GameObject | Component Window Help
Create Empty Ctrl+Shift+M
Create Empty Child Alt+5Shift+M
Create Empty Parent Ctrl+5Shift+G
3D Object »
Effects »

Light

Audio
Video
ul

Camera

Center On Children

Directional Light
Point Light
Spotlight

Area Light

Reflection Probe
Light Probe Group

Pag. 274 /309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Figure 7. Light types in Unity

Identifying main characteristics for different types of lightning
e Point lights

A point light is localized in space in a certain, individual/single point. This type of light
sends the light towards all directions (in a spherical shape) in equal parts, as shown in Figure
8. This correlation is known as the “law of the inverse of the square” and it is similar to the
way real light behaves in real world. The point lines are useful for simulating lamps and
other local light sources within a scene and can be used to create sparks or explosions for
convincingly illuminate the surroundings inside a game environment [2].

[\Iﬁ v Point Light Static ¥

ag Untagged~ Layer Default »

Transform o i

& v Light

o

a R Spot
High Definition RP [Verified| Realtime
Unity Technologies

Version 10.6.0 - July 08, 2021 S Cone

nce Filterand Temper

Figure 8. Point Light in Unity

e Spotlight

A spotlight has a specified location and a set interval after which the light goes off.
Nevertheless, the spotlight is limited to an angle, which creates a cone-shaped illumination
region. The center of the cone indicates the forward direction (Z) of the lightning object.
The light diminishes, also, towards the margins of the light cone. The spotlights are used
for artificial light sources, such as lanterns, headlights etc [2]. The settings for the spotlight
illumination are shown in Figure 9.

ag Untagged ~ Layer Default

Transform

Figure 9. Spotliéht in Unity

Pag. 275/ 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

¢ Directional lights

Directional lights are used to create effects, like the sun light, and can pe deployed as far-
away light sources, which exist somewhere at an infinite distance from the objects. All
objects inside the scene are illuminated like in a scenario where the light always comes
from the same and one direction. The distance between the light and the object being
enlightened is not specifically defined, thus the light intensity remains unchanged all the
time. Directional lights represent big, far-away, sources of light that come from somewhere
“outside” of the world envisioned inside the game-development project. Inside realistic
scenes, this approach would be used in order to simulate the sun’s or the moon’s light, while
in abstract games this type of lights would allow shades addition without specifying an
exact source of lighting [2].

By default, each new Unity scene contains a directional light. Rotation of the default
directional light (the “sun”) triggers the “skybox” update. When the light would be inclined
laterally, but still parallel to the ground-line, the sunset-like effects can be obtained.
Moreover, directing the light towards up makes the sky dark, as if the scene time would be
night. With the light inclined down, the sky inside the game-development project will
resemble normal/real daylight conditions. In case the skybox element is selected by the
developer as Ambiental source, the Ambient Light will be changed in correlation with its
colors (see Figure 10).

¥ Layer Default

Search: All InP

Figure 10. Directional lights in Unity
e Zonal lightning
An area-light is in fact defined by a rectangle-shape in space. In this case, the light which
would be emitted is spread towards all directions, in a uniform manner on the surfaces, but

only from one side of the rectangle. There is no manual control for the range of a lighting
area, even if the light intensity will diminish according to the inverse square rule, as it

Pag. 276 / 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

moves away from the source. The setting of an area light parameters can be seen in Figure
11.

Area Light

} Untagged Layer Default

Transform

Search: All In Pacl

Figure 11. Area Light in Unity
4. Users’ attitude to the Unity game engine

Because the evolution of computer/electronic games is a very fast paced one, we were
interested in identifying the users’ interest, especially within the current pandemic context,
towards the game development technologies. By analyzing Figure 12, we can see a
comparison of some of the most widely used technologies in this field: Unity, Blender and
Maya, from the point of view of the Google engine searches of these elements in Romania.
The Unity technology, probably due to its flexibility and intuitive approach, ranks first.

® Unity ® blender Maya
Game engine Search term Search term + Add comj
Romania Past 12 months + Games ~ Web Search ~

@ mMote: This comparison contains both Search terms and Topics, which are measured differently

Interest over time

L A M[\ \AVAY /\/<\Af

Pag. 277 / 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

® Unity @ blender Maya Romania, Past 12

® Unity @ blender Maya

Bucharest

Unity 67%

blender 16% ' ’
Maya

Percentages calculated out of searches for all
3 terms in Bucharest

L

&

Figure 12. Evolution of Unity, Blender, Maya game development technologies searches
according to Google Trends (for Romania)

R

Inside Figure 13 we can observe the worldwide users’ interest towards Unity technology,
in comparison with the other two technologies chosen, and the place of Romanian users
on this search statistics. Again, Unity is way over the other two technologies, in several
points even overpassing the sum of both other variants put together.

® Unity @ blender Maya Worldwide, Past 12

Interest over time

/\’\’\/\/\/\’\/\/\/‘\/\/\’\/_
II A NAASNC A N A

Pag. 278 / 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

® Unity @ blender Maya Worldwide, Past
Compared breakdown by region Region ¥
® Unity @ blender Maya Sort: Interest for Unity ¥
46 Lithuania | |
47 Vietnam | |
;.‘.‘ .’w— 48 Romania | |
A “ s 49 United Arab Emirates |]
Color intensity represents percentage of searches LEARN MORE 50 Zimbabwe []

Figure 13. Last 12 months comparison for the Google searches on the Unity, Blender
and Maya game development technologies

Considering the Unity Technologies Report of 2021'%4, if we consider the entire niche of
applications developed for mobile devices, the Unity engine usage amounts to a
staggering 61% of the market. The second most widely used solution, based on
native/custom engines is only rated at 15%, and the third option is represented by
GameMaker Studio / Unreal / AppGameKit all with a share of 5% (see Figure 14).

Unity

Native / custom
GameMaker: Studio
Unreal Development
AppGameKit

Other

Cocos2Dx
HeroEngine

Marmalade

0% 20% 40% 60% 80°¢

Figure 14. Unity engine market share for mobile devices applications,
as of 2021 Gaming Report from Unity Technologies

Going a little bit more in depth with the analysis of the Unity game engine technology
usage today, based on the AppBrain!? public statistics, we can certainly argue that Unity

124 https://create.unity3d.com/2021-game-report

125 https://www.appbrain.com/
Pag. 279 /309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

is by far the most widely used solution for game development also for the Android apps
niche, available through the Google Play store. As we can see in Figure 15, the Unity-
based games from the Google Store cover almost 12% of the total number of listed
applications in this category. Moreover, the total number if installs is even bigger,
amounting to 16.16%.

As a further argument for the prominence of this game development technology, Unity
has a market share of over one third of the most important apps in Google Store (top 500,
as listed on December 9, 2021).

Market share overall

11.45% of apps [

16.16% of installs

Market share in top apps @

37.53%ofapps [N

12.47% of installs

Market share in new apps @

35.41%of apps [N

51.91% of installs

Figure 15. Market share statistics for Unity games in Google Play store?

Supporting the previous statements regarding the increased interest in Unity during the
current pandemic context, the statistics show a strong Unity-based batch of new
applications coming to the Google Play store constantly. No less than 35.41% of the new
applications published during the last 30 days'?’ inside the Google Play store were built
upon the Unity game engine.

Next, seeing the game platform development from the business point of view — for its users
— we have researched the different monetization solutions available to the developers.
Within this category of applications there are two main concepts used for monetization
purposes: ads and in-app purchases. In Figure 16 we have the picture of the current
advertising providers for the mobile applications. Even though the first place is
unsurprisingly held by Google and the third place in the medalists’ top is also not a surprise
with Facebook, the second-place contender is again Unity. The ease of use and seamless
integration into the Unity engine, together with the ever-increasing diversity of available
advertisements and the new tools and features of the latest Unity engine iterations made it
possible for Unity to compete on par with the two greatest companies in the field at this
moment.

126 https://www.appbrain.com/stats/libraries/details/unity/unity-3d

127 35 of December 9, 2021
Pag. 280/ 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Google AdMob

Unity

Facebook Audience
Network

AdColony
Appnext
AppBrain
MoPub
Chartboost
Appodeal
Vungle
ApplLovin
InMobi
Internal
IronSource
Leadbolt
Fyber

Other (Please specify.)

Rather not say

0% 10% 20% 30% 40% 50%
Figure 16. Advertisements providers for mobile applications in 2020,
as of 2021 Gaming Report from Unity Technologies

The second solution for monetizing one Unity developed application is through the use on
in-app purchases. For this path, Unity offers the possibility of the developers implementing
in-app purchases on their own. Nevertheless, all professionals are almost unanimously in
accord that this solution would be the best way. Inside the Unity engine environment there
are several established plugins, widely used and trusted, that can take care of most technical
aspects of the implementation of such a system. These plugins offer all the same basic
features, the difference being usually made on five key aspects:

e only including an in-app purchases library or including an entire framework that
supports creation of an fully fledged in-game economic system

e platform availability, some plugins being cross-platform while others are targeting
only a certain platform

e support, as some plugins have only limited support (at least for the free/entry level
versions) while others offer producer’s support and/or community support

e market-share, as some plugins are more popular than others

e pricing, as everybody is in the end interested in the best ROI possible for their
acquisition of a certain software element to increase future income; some plugins
are free, some have free and paid versions, and some are only available as

commercial versions.
Pag. 281/ 309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

Among the best plugins available for in-app purchases monetization within Unity we can

mention:

- Prime31'% — a long-time established plugin, very popular, with different versions
for Android and MacOS, offering an in-app purchases library

- Unibill®® — a popular in-app purchases library with cross-platform capability,
available to handle simultaneously Apple’s App Store, Google Play, Amazon,
Samsung, and Windows Store

- IronSource® — a cross-platform plugin with extended capabilities as both in-app
purchases library and fully fledged SDK for building an entire in-game economy
system.

5. Conclusions

Unity offers its users the possibility to create 2D and 3D games, based on a game engine
that contains a basic API for scripts written in C#. Unity provides support for bump
mapping, reflection mapping, parallax mapping, spatial occlusion on the screen, dynamic
shadows using shadow maps but also full-screen post-processing effects. The game
developers can become editors within the assets shop and can even sell their creation
thorough it. Unity Assets Store can be visited from the Unity website as well as directly
from the Unity Game Engine. Today, especially within the pandemic context which
overwhelmed the entire world with online/electronic content, there is a clear trend towards
using and developing game engine platforms. This fact is supported also by the search terms
analysis from the Google search engine for Romania. By comparing the evolution of
searches regarding Unity, Blender and Maya game development technologies, as reported
by the Google Trends tool, and presented in Figures 12 and 13, we can discern a seasonal
trend for Romanian users. This fact is due to the influence of the periods of time during
which educational activities are more active.

Bibliography

[1] Tsai, Y.T., Jhu, W.Y., (...), Chen, C.Y., Unity game engine: interactive software design
using digital glove for virtual reality baseball pitch training, Microsystem Technologies-
Micro-And Nanosystems-Information Storage And Processing Systems, 27 (4), pp.1401-
1417, Apr 2021

[2] https://unity.com/learn

[3] Goldstone, W., Unity Game Development Essentials, Packt Publishing Ltd., ISBN 978-
1-847198-18-1, UK, 2009

128 https://prime31.com/
129 http://outlinegames.com/

130 https://www.is.com/
Pag. 282 /309

Journal of Information Systems & Operations Management, Vol. 15.2, December 2021

[4] Menard, M. and Wagstaff, B., Game development with Unity. Nelson Education, 2015

[5] Valcasara, N., Unreal Engine Game Development Blueprints. Packt Publishing Ltd.,
2015

[6] Hocking, J., Unity in Action: Multiplatform Game Development in C# with Unity 5,
1st Edition, Manning Publications, 2015

[7] Murray, J., C# Game Programming Cookbook for Unity 3D, CRC Press, 2014

[8] Thorn, A., Pro Unity Game Development with C#. Berkeley, CA: Apress, ISBN: 978-
1-4302-6745-4, New York, 2014

[9] Dickson, P.E. et al., An experience-based comparison of unity and unreal for a stand-
alone 3D game development course. In: Proceedings of the 2017 ACM Conference on

Innovation and Technology in Computer Science Education, pp. 7075, 2017

[10] Blackman, S., Begining 3D game development with Unity: World’s most widely used
multi-platform game engine, Apress, 1st Edition, ISBN: 978-1-4302-3423-4, 2011.

Pag. 283 /309

	1_JISOM 15.2 (in work) - Front
	2_JISOM 15.2 (in work) - Content

